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COMPOSING MUSIC FROM BLACK HOLE AGN SPECTRA 

ABSTRACT 

Black Hole Symphony is an audiovisual symphony touring 
planetariums and science centers across the US, with the goal 
of communicating the richness of science to a wide audience. 
Composed in 5 movements, the composition is derived from 
a single harmonic structure: a sonification of the 
electromagnetic emissions from a black hole's Active 
Galactic Nucleus (AGN). Originating from a complex 3-
dimensional structure of dust and gas, these emissions span 
the entire electromagnetic spectrum - a range of >20 orders 
of magnitude or 60 octaves - and thus far exceed the 
frequency span of our eyes. In this paper, I will discuss my 
development of spectral audification methods, their 
application for creating the Black Hole Chord, and how this 
harmonic structure gives rise to the galaxy of themes and 
movements that make up Black Hole Symphony. 

1. INTRODUCTION 

Spectral audification, a term coined by James Treyford of the 
University of Portsmouth is an emerging field within 
sonification, showing promise within research fields [1], 
communicating data to nonscientists and to the visually 
impaired [2], and for humanistic explorations of science and 
its interconnections with the arts. Its value stems from the 
comparatively large harmonic range of our ears compared 
with that of our eyes. This can be counterintuitive. From an 
initial frequency span comparison, the average human eye’s 
range of 400–790 terahertz [3, p.94] greatly exceeds that of 
our ears’ 20-20,000 hertz [4, p.163]. However, in a universe 
filled with harmonically resonant systems - where resonances 
are accompanied by their frequency multiples in a harmonic 
series - the frequency span of our senses can be less 
important than their ability to perceive harmonic 
relationships originating from sound, electromagnetic or 
other wave phenomena. A comparison of human vision and 
hearing is below: 

Figure 1: Human vision and hearing ranges comparison 

When looking for ways to represent data sources containing 
harmonic resonances, it is clear that the ear’s wide octave 
range offers a key advantage over the eye. 

2. SPECTRAL AUDIFICATION DEVELOPED IN 
OCTAVE OF LIGHT ALBUM 

In 2019-2020, I composed a series of songs for voice, violin, 
piano and electronics entitled Octave of Light on a theme of 
exoplanets, in collaboration with Roy Gould of the Center for 
Astrophysics | Harvard & Smithsonian. At this time of 
writing, 5,602 exoplanets have been discovered, 4,168 of 
them via the transit method of detection [5]. This method 
involves recording the light curve of a star over time in 
search of regular dimming patterns indicative of orbiting 
planets. The light at the moment of transit can then be broken 
into an electromagnetic spectrum: revealing patterns of 
absorption from the chemical constituents of the planet’s 
atmosphere. As these patterns are too widely spread to be 
visible by the eye - even if transposed to visible range - I 
developed a spectral audification technique in order to reveal 
them to the ear. 

In the song Wanderers, I sonify the infrared spectrum of gas 
giant WASP 39-B: 
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Figure 2: WASP 39-B absorption spectrum and sonification. 

By comparing the planet’s spectrum with lab spectra of pure 
elements and molecules from the HiTRAN database, key 
absorption features can be identified as originating from the 
presence of specific atmospheric gasses. Below is the pure 
water vapor spectrum in a similar range: 

 

Figure 3: Pure water vapor absorption spectrum from HiTRAN, and 
sonification. 

The absorption features at 0.935, 1,13 and 1.38µm (shown in 
blue) are clearly audible in both sonic spectra. This allows an 
audience to hear the difference between simple and complex 
molecules in planetary atmospheres as a live, concert 
experience, interwoven into compositions that explore themes 
of planetary discovery and the search for life on other worlds.  

3. THE BLACK HOLE CHORD: BROAD LINE 
SONIFICATION 

Work began on Black Hole Symphony in 2019 as a 
collaboration between Multiverse Concert Series and a team 
of scientists from the Center for Astrophysics | Harvard & 
Smithsonian and Black Hole Initiative. Our goal with the 
project was to dispel the image of black holes as purely 
destructive entities, and replace it with the far richer picture 
that is unfolding to us through modern astrophysics. We now 
understand that black holes are creative forces shaping the 
evolution of stars and galaxies, and that our own Milky way 
could not have formed without the supermassive black hole, 
Sagittarius A*, at its center. This image of a ‘cosmic 
conductor’ at the heart of the galaxy was a powerful one, and 
naturally inviting to explorations through sound and music.  

Although black holes emit no radiation from beyond their 
event horizons, their intense gravities trigger immense 
electromagnetic and gravitational emissions from their 
surrounding regions. This structure, close to the black hole, is 
called the Active Galactic Nucleus or AGN, and consists of 
distinct nested layers of gas and dust: 

 

Figure 4: Beckmann, Shrader (2012) AGN unified model schematic [6] 

Each of the AGN components produces their own emissions, 
spanning the entire electromagnetic spectrum. Unlike the 
absorption lines in exoplanet atmospheres, however, their 
features are defined by emission lines as molecules become 
ionized by the immense heat produced within the system. 

This spectrum from SDSS J002025.22+154054.7 [7] displays 
prominent emissions lines, indicating ionization in the broad 
line cloud region of an AGN. 

 
Figure 5: Broad line emission spectrum from SDSS J002025.22+154054.7 
quasar. 

Using the Octave of Light method, and omitting the weaker 
lines, these emission lines are sonified as a musical chord 
below: 
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Figure 6: Broad line emission spectrum sonification from SDSS 
J002025.22+154054.7 quasar. 

In order to distinguish the Lyα and NV 1240 lines and still 
produce a chord playable by all orchestral instruments, I made 
the choice to round the NV 1240 down to E# (sometimes 
spelled as F). This broad line sonification then becomes the 
first building block of Black Hole Symphony, and from it I 
extrapolated a musical mode: a variation on a B minor scale 
with both perfect and augmented 4ths, and raised 7th. In turn, 
this mode became the Spectral Theme which begins the piece, 
played by solo piccolo: 

 
Figure 7: Broad line chord, extrapolated scale, and Spectral Theme for piccolo. 
Audio file 2.1. 

As I worked with the theme, the close proximity of the Lyα 
and NV 1240 lines - initially a challenge in creating the 
sonification - became an inspiration for melodic growth, the 
lower frequency NV line driving upward towards Lyα. Over 
time, this led to the creation of a family of melodies that leap 
up to an accented dissonance, then resolve to consonance on 
a weak beat, often in the pattern of a lower chromatic 
appoggiatura. 

The first such example comes from the 1st Movement’s 
Sonata Allegro theme on strings, joined by the Accretion 
theme. Both themes follow this melodic trajectory of rising 
resolution: 

  

Figure 8: Sonata Allegro Theme 

Later, the 2nd movement’s Galaxy spectrum: 

 
Figure 9: Galaxy Spectrum played by Cellos. Audio file 1.2 

Later, the Heart of The Galaxy theme on trumpet follows this 
shape, but fails to resolve on the first attempt. Ultimately, it 
pulls upwards to competition of the gesture on the 2nd phrase: 

 
Figure 9: Heart of the Galaxy Theme for Trumpet in C, Audio File 2.2. 

Later, this shape informs soprano motifs in the 4th and 5th 
Movements:  

 

 

 

 

Figure 10: Soprano Themes. Audio Files 2.3, 2.4, 2.5, 2.6. 

4. THE COMPLETE BLACK HOLE CHORD: 
BROADBAND SPECTRUM SONIFICATION 

Although the broad line sonification spans visible and 
infrared frequencies wider than the eye could perceive (the 
ratio from lowest to highest frequency is 1:2.3), it still only 
represents a narrow portion of the full electromagnetic 
spectrum, which can span 20 orders of magnitude or more. In 
musical terms, this is ≥60 octaves. Even with the wide 
frequency response of the ear, a 1:1 aural mapping of the 
entire spectrum is not possible, and therefore a scaling 
method had to be developed which encompassed the entire 
electromagnetic range, yet still revealed fine-grain details.  

In collaboration with Mojegan Azadi of the CFA, I developed 
a broadband spectrum sonification method based on her 
simulations separating the emissions of individual 
components of the AGN [8]. In order to compress the 
emissions into audible range, every power of ten is 
compressed into one musical octave, i.e. log10 becomes 
log2. 
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Figure 11: Simulated Spectral Energy Distribution of an AGN, Azadi et al 2023, 
Black Hole Chord sonification table, and visual-spatial guide. 

In order to depict the varying natures of each of these 
components - some broadband, some narrow, many with 
important peak locations - I made a series of harmonic and 
orchestrational decisions in order to assemble the final chord.  
Beginning in the mid range: the Torus region has two 
important areas - the silicate grains (narrow lines) and black 
body radiation (broader). To show the broadness of the black 
body area, I surrounded the central D#4 with whole steps on 
either side. These are played by horns, and the grains by cor 
anglais. Together, these pitches became the Torus theme on 
solo horn:  

 

 

Figure 12: Torus Theme, later extrapolated into a larger passage. Audio file 2.1. 

To outline the broad range of emissions generated by the host 
galaxy from its stars and hydrogen clouds, I chose a solo 
cello. Its melody traces the harmonic region, emphasizing the 
central F#2 and upper limit B2 (see Figure 9). 

For the broad line region, a mapping problem arose in that its 
salient features - the emission lines - were too narrowly 
distributed in the log2 scale to be either audible or playable. 
The solution was to employ a “nested sonification”, 
positioning the 1:1 mapped sonification of the broad line 
region on top of the larger log2 sonification in the appropriate 
octave. This allows the detailed emission lines to shine 
through in the same sonic space as the AGN’s full emissions: 
spanning from infrared to gamma rays. 

An important region of the AGN’s emissions to 
astrophysicists is the X-Ray band, which originates from the 
iconic accretion disk. Its iron content emits a spectral feature 
called the Fe-K or iron line, which displays a characteristic 
doppler shift. This twin-peaked spectral feature can be 
analyzed to reveal the the black hole’s precise spin: 

 

Figure 13, “Broad Iron Lines in Active Galactic Nuclei.” Fabian, Andrew C., 
Kazushi Iwasawa, Christopher S. Reynolds and Andrew J. Young (2000). [9] 

Doppler shifts are also a common feature of sound and music, 
and I employ two methods to evoke the spectral oscillations 
of the iron line - and therefore rotation of the black hole - in 
the sonification. The first: a written out 3-semitone oscillation 
for guitar and piccolo, played in inversely mirrored intervals: 
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Figure 14, Iron Line Doppler, Audio File 1.2. 

Combined with this, I apply a 1-second modulated chorus 
effect to the violin harmonics playing the central pitch of C#, 
rising and falling 1 half step at either extreme. 

With this last component in place, the complete Black Hole 
Chord is shown below, arranged for piano (minus the filtered 
noise at the radio and gamma extremes): 

Figure 15, Black Hole Chord arranged for piano. 
5. CONCLUSIONS AND FUTURE DIRECTIONS 

Spectral audification continues to show promise for 
researchers, science communicators and artists alike. As I 
continue to compose science symphony projects and train 
students in the techniques of sonification, I look to develop 
these methods further and connect with other sonification 
practitioners to extend the techniques to new areas of data 
communication. Mars Symphony, premiering in summer 
2024, employs the same method to sonify a spectrum of the 
Martian atmosphere captured by the JWST. In it, water vapor 
absorption lines are present - and are thus sonified as the 
same pitches heard in Octave of Light. As we create more 
science symphony projects, our audiences will experience an 
expanding library of molecular spectra woven through a 
variety of compositions on different topics. As these projects 
continue to tour, a vital undertaking is to survey audience 
members on the communication efficacy of sonifications like 
the Black Hole Chord, and its ability to relay the intricacies 
of the underlying science to different age groups. This will 
doubtless reveal strong and weak points in a method in a 
systematic manner, allowing for further improved iterations. 
Ultimately, we plan to pair these science symphony projects 
with lesson plans for school ages groups, and further 
education materials for adult audiences. By providing unique 
musical encounters with astrophysics, we aspire to spark 
further engagement and deep learning in audience members 
who might not otherwise have engaged with science. 
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