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ABSTRACT

The purpose of this article is to describe a procedure for
obtaining, from a reference sound, a multidimensional
dataset representing the time-invarying frequency envelope
and the cross-correlation between the individual frequency
components of its spectrum. By using FFT spectral analysis,
the magnitude of the frequency bands is sampled in irregular
time series (unevenly sampled), suitable as model-based
control for dynamic systems in sound design and auditory
display applications. The article explains how to classify
these relationships and use the resulting datasets repository.

1. INTRODUCTION

Generally, the variations in time and space of each element
of a complex object, from biology to linguistics, are strictly
constrained and interdependent. For example, when one
finger moves, the others follow or oppose it. Similarly, the
frequency bands of a complex sound are articulated
according to shared trajectories and trends. We can classify
this correlation by observing the acoustic features of the
sound,[1] or, in a predictive way, by attributing specific
levels of covariance to the spectral bands, depending on the
sound source, or the purpose of use for which it was
produced!.

In order to numerically represent these relationships within
the spectrum, the method proposed here performs the FFT on
the reference audio file, by decomposing it into a moderate
number of components, up to 10, representing a multivariate
time series. The dynamics of this time-dependent variable
data provides a dataset of amplitude envelopes, formally
organized, which can be applied simultaneously as control
functions to multiparametric audio synthesis or processing
systems.

A significant feature of the datasets is that the functions
representing the amplitude envelope of each band are
obtained through the adaptive data smoothing technique UID
(Unevenly Invariant Downsampling) [2], not based on
windowing functions, bandwidth or averaging methods [3]
but on a sample-by-sample analysis of the envelope.? This
creates a unique and invariant vector segmentation of the
reference file, facilitating the recognition of the

U A general classification of these relationships is discussed in
the last paragraph dedicated to the application criteria.
2 Some explanation on UID is given in section 2.2.2.
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coherence/equivalence between the reference model and its
temporal or frequency manipulations.

A prototype has been developed in Max and can be
downloaded at https://zenodo.org/records/11355613.

2. METHODOLOGY

The following methods describe how to derive datasets of
meaningful control data for sound synthesis and
manipulation algorithms.

2.1. Data selection

The choice of the sounds (which we will refer to with the
term clips) depends on the intended use of the data that we
will extract. Since the analysis algorithm, at this initial stage
of our research, produces a time-invarying frequency
envelope for the whole clip, it is more reliable to use clips of
short duration, or basically with pitch-invariant spectra (or
with small and repetitive variations, for example the texture
of the wind, or a spoken voice). However, interesting results
can also be obtained by using music clips, consisting in a
sequence of chords, or notes. In this way, e.g., a diatonic
spectral mixture, rather than the specific spectra of each note,
can be produced. Therefore, the duration of the reference file
can typically vary from a few seconds to about a minute. An
important aspect of the research is that the methodology
adopted aims to define, classify and identify a dataset
depending on the immediate recognition of a known sound
content, e.g. a classical music theme, thus simplifying a type
of selection based on numeric or non-self-explanatory tags.
Music performances, with acoustic or electronic
instruments, can provide a wide collection of cross-correlated
expressive functions that can be applied, as happens for
grooves [4], to overcoming the inexpressiveness of
quantized control data.? In the classic repertoire it is possible
to identify famous tunes whose derived datasets, although
applied to systems of resynthesis or timbre manipulation, can
maintain their recognizability and therefore their iconic value
basically unchanged, with different gradations (see Figure 1).
The mimetic dimension and the semantic meaning of the
material used (i.e. its referential relationships with a specific
source or context) can assume different levels or can be

3 The term "quantization" here refers to the automatic
mapping, e.g. in a score editor, of a large set of values (as
pitches or velocities) to a smaller or fixed set of elements.
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completely omitted through non-linear transfer functions
applied to the processing of the spectral parameters [5].

Short-duration clips extracted from jingles or earcons can
be used to standardize auditory display systems based on a
formally heterogeneous set of signals, through derived
models reproduced by homogeneous proprietary synthesis
processes. Speech clips provide a wide range of information
that can be used in an extension of prosody modeling
techniques to abstract sound materials.

2.2. Sampling

The algorithm of the software engine developed in Max for
the automatic generation of datasets from reference audio
files is illustrated here.

2.2.1. Spectral analysis

The data preprocessing involves the extraction via FFT of the
subset of bins from which to generate the amplitude
envelopes for the dataset. It is developed according to the
following steps.

1) Select the highest magnitude bins in each FFT frame.

2) Count the recursion of the bins selected in all frame.

3) List the bins sorted by score (these will be the bands for
which to extract the amplitude envelope).

Calculating a class set of unchanged bins/pitches for the
entire length of the analyzed sound is a specific purpose for
which the algorithm is being developed: to generate a
constant environment, valid even in the presence of spectral
variations. Thus allowing to intentionally act on the
sonification interface, depending on specific expressive
needs; e.g. to emphasize an event through an harmonic
reorganization or distortion.

To speed up the analysis operations, the FFT is carried
out in offline mode, using the Max jit.fft opcode, active on
the two planes of a matrix compiled with the complex signal
to be analyzed.

al a2 b1 b2 cl c2 d1 d2

Figure 1: First 4 bars of Prelude N.1 in C major, Well
Tempered Clavier, Vol.1, by J. S. Bach. We note the
recursion of a binary form, characteristic of the
compositional structure of the prelude, applicable to
auditory display contexts where the reiteration of
rhythmic patterns is required.

2.2.2. Dataset generation

The envelopes of the bands are isolated using a bank of
bandpass filters with cutoff frequencies tuned to the
frequency of the FFT bins and with a bandwidth equal to the
fundamental frequency of the FFT, and then smoothed with a
16th order IIR lowpass filter.

The multidimensional dataset extracted from the spectral
data is obtained through the non-uniform downsampling
procedure called UID (Unevenly Invariant Downsampling),
which we have already mentioned in the Introduction. It is
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based on the calculation of the dynamic variation in the
envelope of a signal with a data smoothing method capable
of detecting variations via an adaptive threshold comparator
with hysteresis. Its main advantage is to convert an amplitude
envelope into a series of intervals comparable to those of the
traditional music notation (Fig. 2).

Figure 2: The superpositions of the 10 functions of the
bands with the greatest magnitude contained from 172 Hz
(highlighted function) to 2497 Hz of a spoken male voice
sentence made up of two words and five distinct
utterances.

2.3. Time series cross-correlation

The cross-correlation coefficient of the bands makes it
possible to classify and index the datasets depending on a
symmetry or covariance parameter, which can replace the
simple taxonomic reference to its source in the selection of a
sound clip.

For non-uniform time series (unevenly sampled), the
correlation can be measured by different methods, e.g. with
the Gaussian kernel correlation. Here we present the Pearson
coefficients [6] of the series belonging to two consecutive
bins, measured between the distribution of points over time
and between variations in amplitude.

Figure 3 shows the Pearson correlation coefficient
between the first and second functions (172 Hz and 258 Hz)
represented in Figure 2. The analyzed clip (spoken voice
lasting approximately 3 seconds) shows a very high data
correlation on the time axis, R = 0.99; while on the amplitude
axis the correlation is weak, R = 0.33.

Y values for bin 2
Xvalues for bin 2

Y values for bin 1

R=0.36

X values for bin 1

R=0.99

Figure 3: Pearson correlation indices for the distribution
of data points on the x (time) and y (amplitude) axes. The
high temporal correlation highlights the synchronicity of
the bands in speech; the low correlation on the amplitudes
demonstrates the dynamic variations between the
functions.
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The correlation data demonstrate that using these
functions in sonification contexts can allow for an excellent
level of synchronization (phase correlation) and a high
dynamic/expressive diversification between the functions
(amplitude correlation).

2.4. Replication

The pattern extraction from prerecorded audio material
allows sonification systems to replicate the expressive
structure of the reference file, inheriting, in addition to the
formal structure, the dynamic and expressive variations. The
time series obtained from the band analysis can share the
same trend or present partially divergent characteristics. In
the use of spoken vocal samples, prosody, although capable
of expressively diversifying the spectrum, keeps the phases
of speech articulation and segmentation into utterance
unchanged. Conversely, the analysis of polyphonic clips can
present interesting divergent patterns and complex metric and
polyrhythmic characteristics.

3. APPLICATION CRITERIA

The application criteria of the exposed method depend on the
selection of the reference audio samples and their mapping in
the analysis and resynthesis stages. Both depend, in turn, on
the need to keep the starting material recognizable, from a
frequency or dynamic point of view.

In audification context (direct translation of data into
sounds [7]) oriented to the faithful replica of a spectrum
using external sources, it is not fruitful to use the amplitude
data to control other parameters, e.g. pitch or density, as this
breaks the expressive balance of the spectrum. Instead, in a
free creative process, the relationships inherited from the
analyzed file do not appear to be binding, but rather the
interdependence between the functions, in terms of formal
correlation or divergence. The referential relationships are
fundamentally oriented towards a sonification based on
physical models and on the possibility of recognizing these
models, even inadvertently, as belonging to the same
expressive category. Relationships in which a referentiality is
not required are oriented towards serial data manipulations,
typical of spectral composition [8].

Although not systematic, some
methodologies are suggested.

application

3.1. Primitive

This is the most basic transcription system of a spectrum, in
which the frequency bands magnitudes control the
corresponding frequency amplitudes of the sounding
algorithm (this is a well-known vocoder effect). We are not
concerned here with the match of the frequencies of the
controller and the controlled sound environment, but rather
with the reproduction of the balance of the frequency bands,
understood as a pitch class. So, we can even use a VST
virtual instrument with its own complex spectrum
superimposed on the analyzed one.

The higher the temporal correlation, the easier it becomes to
identify the processing product as derived from a
recognizable source. Indeed, the phase shift of the bands (i.e.
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the temporal decorrelation of the functions) makes the onsets
unclear and decreases the recognizability of the sound object
content. The amplitude decorrelation appears less important
for an assessment of referentiality.

In this direct approach, the application criteria can be carried
out directly by manipulating the spectral parameters, within
the same analysis/resynthesis system. Some examples follow.
a) The frequency bins magnitudes control the pitches of the
sounding algorithm. The pitch increases proportionally with
the magnitude of the spectral band. It may be considered an
audification case. Rescaling is required and music serialism
techniques are applicable, such as transposition or
inversion.[9] In polyphonic scenarios, the movement of each
voice follows a pattern inherited from the bands of the
analyzed sound, and interesting phrases and imitation
musical effects are generated.

b) The frequency bins magnitudes control the time
parameters (duration, pause or delay) of the sounding
algorithm. All the parameter controlled by the same dataset
are synced by a common class of spectral bands.

c) The frequency bins magnitudes control heterogeneous
parameters; e.g. the fundamental band magnitude controls the
instrument articulation, and the 2th harmonic controls the
pitch.

3.2. Derivative

Since one of the main aims of the research was to overcome
the simplicity/obviousness of a direct application of spectral
analysis to the sonification system, several attempts have
been made in the search for novel techniques capable of
giving the sonification system a sort of interpretative
criterion, to create the feel of an interaction, free but at the
same time with a perceivable correlation with the sonified
sound object. [10]

From this perspective, a system in which the sonification
environment is based on initially independent variables which
are progressively modeled on the parameters acquired through
spectral analysis, provided much more convincing results. In
the audio example 5, we try to create an accompanying sound
environment for a speaking voice.* We list below (table 1) the
parameters used in the algorithm and their assignment to the
corresponding spectral parameters of the dataset.

Sound accompaniment
parameters

Dataset parameters

Interval of the envelope FFT window size
follower of the voice in the time

domain

Pitch set Frequency envelope

Delay time of the voices Average interval between

amplitude pitches

Velocity of the voices Sequence of the amplitude

points

Parameters jitter Average distance between

amplitude points

Table 1. Audio example 5. Sound accompaniment
parameters linked to the voice spectral dataset.

4 Examples of audio processing are available at:

https://www.musicaelettronicabellini.it/icad2024.
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Through the application of the spectral dataset, we try to
convert a stochastic system into a model-controlled one,
tuning its parameters depending on the spectral information.

3.3. Spectra classification

As mentioned in the Introduction, another interesting aspect
is the search for a cataloging method of the spectra in relation
to their cross-correlation. A simple classification can be
traced back to a gradation of differences between
phase/temporal correlation, from regular to irregular (so
understood in terms of synchronicity) and amplitude
correlation, in which the overlapping patterns, extrapolated
from their original domain, draw reusable formal models for
a constraints-free serial articulation. Their recursive structure
suggests interesting applications, for example, in the design
of warning signals and audible alarms.

Distinguishing the phase correlation from the amplitude
correlation, we can also exemplify the following categories
and items.

a) Low phase and amplitude correlation: chaotic sounds,
earth nature and environmental sounds, polyphonic or
polyrhythmic events, asynchronous synthesis techniques,
nonlinear modulations.

b) High phase and amplitude correlation: spoken voice or
other monophonic and monorhythmic sounds, periodic
sounds produced by mechanical instruments, audio signals
for encoded information.

4. CONCLUSIONS

The datasets obtained using the illustrated method will flow
into a relational database, providing a useful and easy
reference in the search for formal models already endowed
with expressive characteristics culturally shared by a wide
range of users. The figure 4 shows a portion of the dataset of
a greeting phrase in Chinese by a female voice. The original
audio file and a reworking with a piano VST are available at
the audio example page (example 3).

An interesting future development of research aims at an
inferential analysis through which to determine what are the
levels of preservation of the semiotic structure and initial
categorization of a sound, even in the presence of its formal
alteration. Knowing the recognition relationships of a sound
within a processing system can provide interesting insights
into understanding the parametric gradients that contribute to
the perception/identification/classification of a sound.

| female chinese spoken | 2.8 sec | 2048 ft size (48kHz sr) | sens 1. | x = time (normalized), y = amp (normalized)

score 14 Bin 8 | 210.94 Hz | x | 0.600015 | ©.000378 | 0.007384 | 0.019287 | ©.074215 | 0.462332 | ©.434642
0.000859 | ©.001001 | 0.016358 | 0.152459 | ©.082847 | 0.020347 | ©.156023
score 13 Bin 9 | 234.38 Hz 0.000015 | ©.000742 | 0.006686 | ©.020281 | ©.028585 | 0.041556 | ©.073428
0.000692 | 0.001 0.014919 | 0.21569 | 0.208298 | ©.163446 | 0.097317
score 12 Bin 10 | 257.81 Hz 0.000015 | ©.001009 | 0.0061 ©.020993 | 0.025134 | 0.034388 | 0.840265
0.000605 | 0.001 0.012046 | 0.365799 | 0.363806 | ©.252561 | 0.234882
0.000015 | 0.00144 | 0.005937 | 0.026062 | ©.027464 | 0.05271 | ©.071685
0.000537 | 0.001002 | 0.011387 | 0.803434 | ©.803421 | 0.195145 | ©.147553
0.000015 | ©.002041 | 0.006026 | 0.040235 | ©.041208 | 0.05553 | ©.070957

score 21 Bin 11 | 281.25 Hz

y
x
y
i
Yy
x
y
score 14 Bin 12 | 304.69 Hz | x
y | ©.000438 | 0.001002 | ©.010714 | 0.874939 | ©.875117 | ©.212622 | 0.181891
score 19 Bin 13 | 328.13 Hz | x | 0.000015 | ©.002248 | 0.006315 | 0.02578 | ©.046751 | 0.047931 | ©.062112
y | ©.000406 | 0.001 0.011271 | 0.28974 | 0.663982 | 0.66423 | 0.287493
score 27 Bin 15 | 375 Hz X | 0.000015 | 0.001981 | ©.008252 | 0.03933 | 0.065933 | 0.06721 | 0.096722
y | 0.000454 | 0.001001 | 0.018736 | ©.169113 | 0.997904 | ©.997798 | ©.063919
score 30 Bin 16 | 398.44 Hz | x | 0.000015 | ©.002182 | 0.045994 | 0.071974 | ©.073035 | 0.094548 | ©.181512
y | 0.000416 | ©.001003 | ©.149618 | 0.887989 | ©.888047 | ©.037588 | 0.149561
score 28 Bin 20 | 492.19 Hz | x | 0.000015 | ©.603799 | 0.072434 | 0.130784 | ©.425529 | ©.445231 | ©.448808
y | 0.000201 | 0.001002 | 0.11005 | 0.031277 | ©.08208 | ©.338559 | 0.337718
X | 0.000015 | 0.004185 | ©.073681 | 0.343329 | ©.347655 | 0.422049 | 0.443843
y | 0.000183 | 0.001002 | 0.079727 | @.001 0.001 0.101202 | 0.512881

score 21 Bin 21 | 515.63 Hz

Figure 4: Portion of dataset obtained from a spoken voice
sample and its hierarchical organization obtained through
the recursion score of the spectral bands.
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